

Roundtable Overview, Structure, and Desired Outcome

Isik Kizilyalli Program Director, ARPA-E

Executive Summary

Opportunity

- ► EGS is a *massive technical opportunity* (190,000 Quads extractable)
- EGS utilizes US natural resource advantages (geology)
- ▶ EGS leverages *US human capital advantages* (oil & gas expertise in drilling, well operation, etc.)

Challenges

- Capital-intensive, high-risk
- Chicken and egg problem for high temperature EGS
- Surveying has improved, but development has lagged

ARPA-E Vision: spark "unconventional" revolution in EGS

- Support key technologies in reservoir design and downhole tools
- Relax geographic constraints on geothermal energy
- Leverage new generation of geothermal and oil & gas talent

Figure 1.5 Temperatures at a depth of 10 km.

Purpose of this roundtable

- ARPA-E's mission is to overcome long-term and high-risk technological barriers in the development of energy technologies to ensure the US' technological lead and energy security:
 - Reducing imports
 - Improving energy efficiency
 - Reducing emissions
- "If it works, will it matter?"
- Today we will:
 - Test the hypothesis that a targeted set of investments in the right tools for enhanced geothermal systems will dramatically lower costs/risks and lead to widespread viability
 - Collect ideas from the geothermal and adjacent communities
- After today:
 - A present or future ARPA-E Program Director may pitch a program in this area

Why EGS: US "proved" reserves

Resource	Supply
Oil	35B bbl proved, 200 EJ
Gas	341 TCF proved, 340 EJ
Coal	254 B ton recoverable, 5800 EJ
Uranium	45MM lb @\$30/lb; 362MM lb @ \$100/ton, 65 EJ
Geothermal	200,000 EJ extractable

The real prize is deeper underground

Res	ource		Resource Potential Capacity	
		Capacity (GW _e)	Source(s) and Description	
Hydrothermal	Identified Hydrothermal Sites	6.39	USGS 2008 Geothermal Resource Assessment¹ - Identified hydrothermal sites - Sites ≥110 °C included - Currently installed capacity excluded	
	Undiscovered Hydrothermal	30.03	USGS 2008 Geothermal Resource Assessment ¹	
Enhanced	Near- Hydrothermal Field EGS	7.03	Assumptions based on USGS 2008 assessment¹ - Regions near identified hydrothermal sites - Sites ≥110 °C included - Difference between mean and 95 th %ile hydrothermal resource estimate	
Geothermal Systems (EGS)	Deep EGS	15,908	NREL 2006 Assessment ² , MIT Report ³ , SMU Data ⁴ - Based on volume method of thermal energy in rock 3-10 km depth and ≥150 °C - Does not consider economic or technical feasibility	
1 (Williams, Reed et al., 2008a) 2 (Petty and Porro, 2007) 3 (Tester et al., 2006) 4 (Richards, 2009)				

What's limiting EGS?

Drilling and exploration costs scale with the prize

Minimal VC funding going toward geothermal

Figure 3: Cleantech VC activity has shifted markedly toward late-stage deals

Total VC in any kind of geothermal: ~\$21M/year

ARPA-E vision

ARPA-E vision: spark "unconventionals" revolution in geothermal

De-risk radical new tools that could enable EGS development

Areas of interest:

- High-resolution, low-cost surveying tools
- 2. HPHT downhole electronics/sensors
- 3. Precision reservoir designs
- 4. Radical reductions in drilling cost

ARPA-E vision: spark "unconventionals" revolution in geothermal

 De-risk radical new tools that could enable EGS development

Areas of interest:

- High-resolution, low-cost surveying tools
- 2. HPHT downhole electronics/sensors
- 3. Precision reservoir designs
- 4. Radical reductions in drilling cost

Narrow down and set priorities through this workshop

High-resolution, low-cost surveying tools

- What opportunities are there to improve cost and resolution in geothermal surveying tools?
 - Surface-based
 - Remote (e.g. from cube satellites)

SoA:

- ~1 μgal Hz^{-1/2} sensitivity
- ▶ 8-150 kg
- ~Liter volumes
- ≥ \$100k

On-chip MEMS gravimeter

- ▶ 40 µgal Hz^{-1/2}
- ~gram masses
- ~cm³ volumes

HPHT downhole electronics and sensors

- Directional drilling requires computation in the bottom-hole assembly (BHA)
- Downhole sensors, processors, transistors, capacitors, etc. are needed
- How much of a challenge is communication back to surface?

New reservoir designs

- What does the ideal underground heat exchanger look like?
- How do you create and manage it?
 - Horizontal drilling
 - Directional fracking
 - Mixed-mechanism stimulation
 - Maintenance during decline
 - What would it take to produce from the brittle-ductile transition zone?

Radical reductions in drilling cost

- Deeper (3-10 km), harder (granite), and hotter (>175 °C) than most O&G drilling
- Large cost; larger with greater depth
- SoA: 125 ft/day
- ► GTO goal: 250 ft/day
- Oil & gas capable of 1 mile/day

Foro Energy OPEN 2009 awardee

Areas not of interest for this roundtable

- Incremental advances
- Test beds
- Models without a physical tool
- Improvements to practice
- Shallow (< 3 km) or low-temperature (< 250 °C) geothermal</p>
- Main uses other than heat-to-electrons
 - Direct use, mineral co-production, storage
 - *these are OK as side benefits

Agenda

<u>Time</u>	Event	
8:30 - 9:00 AM	Registration	
9:00 – 9:15 AM	Welcome and Introduction to ARPA-E Jennifer Gerbi, Associate Director for Technology, ARPA-E	
9:15 – 9:30 AM	Roundtable Overview, Structure and Desired Outcome Isik Kizilyalli, Program Director, ARPA-E	
9:30 – 9:40 AM	Attendee Introductions	
9:40 – 10:00 AM	GTO Overview and Perspectives on EGS Sean Porse, DOE Geothermal Technologies Office	
10:00 – 10:20 AM	EGS Cost and Performance Metrics Chad Augustine, NREL	
10:20 – 10:25 AM	Breakout 1 Overview and Objectives Michael Campos and Lakshana Huddar, Fellows, ARPA-E	
10:25 – 11:00 AM	Coffee break/Networking	
11:00 – 12:30 PM	Breakout Session 1	
12:30 – 1:30 PM	Lunch	

	1:30 – 1:50 PM	Modeling and Characterization of Fracture Roughness and its Impact on Heat and Mass Transport Processes Roland Horne, Stanford University			
	1:50 – 2:10 PM	Super Hot EGS: Reducing the Cost of Geothermal Through Technology Breakthrough Susan Petty, AltaRock Energy			
	2:10 – 2:30 PM	Preskout 2 Overview and Objectives			
	2:30 – 2:35 PM				
	2:35 – 2:40 PM	PM Networking/Transition to Breakout Session 2			
	2:40 – 3:50 PM	Breakout Session 2			
1	3:50 – 4:00 PM	3:50 – 4:00 PM Wrap-up/open discussion			
	4:00 – 6:00 PM One-on-one meetings (optional)				
1					

Breakout Session Structure

- SESSION 1: Instrumentation
 - High-temperature downhole electronics
 - Remote sensing tools
- SESSION 2: Precision reservoir design
 - Controlled fracture techniques
 - Using Al/ML for precision drilling
- Questions that permeate both sessions:
 - Are there opportunities to leverage O&G knowledge base and infrastructure?
 - What size projects would be needed? \$100k? \$1M? \$10M?

Guidelines for the day

- Think big!
- We need your input!
- Poke holes in ideas no need to come to consensus
- Make sure we're not missing anything
- Please don't discuss any ongoing OPEN proposals
- It's possible there's no program here

Several one-on-one meeting slots are still available – see Laura Demetrion

Questions?

EGS investment is less attractive than oil & gas

Factor	Oil & Gas	EGS
Geology	Soft sedimentary rockStable, regular formationsStraightforward seismic surveying	 Hard basement rock Fractured formations, often volcanic Difficult seismic surveying
Fluid composition	< 175 °CVariation by field, maturity	 200+° C desirable Variation by field, some steam unusable for power generation
Reservoir lifetime	• 1-5 years for unconventionals	• 25-30 years
 Economy/markets Internationally traded Easy to store, transport, and sell 		Feeds into local gridLimited selling optionsAdditional infrastructure and contracts needed

